A prophylactic hepatitis C virus vaccine: a distant peak still worth climbing

J Hepatol. 2014 Nov;61(1 Suppl):S34-44. doi: 10.1016/j.jhep.2014.09.009. Epub 2014 Nov 3.

Abstract

Hepatitis C virus (HCV) infects an estimated more than 150 million people and is a leading cause of liver disease worldwide. The development of direct-acting antivirals (DAAs) will markedly improve the outcome of antiviral treatment with cure of the majority of treated patients. However, several hurdles remain before HCV infection can be considered a menace of the past: High treatment costs will most likely result in absent or limited access in middle and low resource countries and will lead to selective use even in wealthier countries. The limited efficacy of current HCV screening programs leads to a majority of cases being undiagnosed or diagnosed at a late stage and DAAs will not cure virus-induced end-stage liver disease such as hepatocellular carcinoma. Certain patient subgroups may not respond or not be eligible for DAA-based treatment strategies. Finally, reinfection remains possible, making control of HCV infection in people with ongoing infection risk difficult. The unmet medical needs justify continued efforts to develop an effective vaccine, protecting from chronic HCV infection as a mean to impact the epidemic on a global scale. Recent progress in the understanding of virus-host interactions provides new perspectives for vaccine development, but many critical questions remain unanswered. In this review, we focus on what is known about the immune correlates of HCV control, highlight key mechanisms of viral evasion that pose challenges for vaccine development and suggest areas of further investigation that could enable a rational approach to vaccine design. Within this context we also discuss insights from recent HCV vaccination studies and what they suggest about the best way to go forward.

Keywords: Antibodies; Hepatitis C; T cells; Vaccine.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Disease Models, Animal
  • Epidemics
  • Hepacivirus / immunology*
  • Hepatitis C / epidemiology
  • Hepatitis C / prevention & control*
  • Humans
  • Treatment Outcome
  • Viral Vaccines / immunology
  • Viral Vaccines / therapeutic use*

Substances

  • Viral Vaccines