Copper-induced tight junction mRNA expression changes, apoptosis and antioxidant responses via NF-κB, TOR and Nrf2 signaling molecules in the gills of fish: preventive role of arginine

Aquat Toxicol. 2015 Jan:158:125-37. doi: 10.1016/j.aquatox.2014.10.025. Epub 2014 Nov 6.

Abstract

This study explored the possible preventive effects of dietary arginine on copper (Cu)-induced tight junction mRNA expression changes, apoptosis and antioxidant responses in the gills of young grass carp (Ctenopharyngodon idella). The results indicated that exposure to 0.7 mg/L (11.01 μmol/L) Cu for 96 h induced the production of reactive oxygen species (ROS), thereby increasing protein oxidation, lipid peroxidation and DNA damage in the gills of fish. However, these oxidative effects were prevented by arginine supplementation. Arginine also prevented the toxic effects of Cu on the activities of copper/zinc superoxide dismutase (SOD1), glutathione-S-transferase (GST), glutathione peroxidase (GPx), glutathione reductase (GR) and the glutathione (GSH) content (P<0.05). However, Cu induced an adaptive increase in the activity of catalase (CAT), and arginine supplementation further increased CAT activity (P<0.05). Moreover, Cu induced increases in the relative mRNA expressions of SOD1, CAT, GPx, GST, caspase-3, caspase-9, NF-E2-related factor 2 (Nrf2), Kelch-like-ECH-associated protein 1a (Keap1a), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-8 (IL-8), transforming growth factor-β (TGF-β) and nuclear transcription factor-κB p65 (NF-κB p65) in the gills of grass carp (P<0.05). In contrast, the relative mRNA expression levels of occludin, zonula occludens-1 (ZO-1), claudin b, claudin 3, claudin 12, target of rapamycin (TOR) and inhibitor factor κBα (IκBα) in the gills were decreased by Cu (P<0.05). However, pre-treatment of fish with arginine prevented Cu-induced relative mRNA expression decrease. Interestingly, Cu exposure resulted in increases in claudin 15a mRNA expression (P<0.05) but could not induce claudin c, caspase-8 and interleukin-10 (IL-10) mRNA expression changes in the gill of fish (P>0.05). These results indicated that Cu exposure induced apoptosis and antioxidant system and tight junction mRNA changes in the fish gills, which could be completely blocked by dietary arginine pre-supplementation.

Keywords: Apoptosis; Arginine.; Copper; Gill; Signaling molecule; Tight junction.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Apoptosis / drug effects*
  • Arginine / pharmacology*
  • Carps / genetics
  • Carps / metabolism
  • Carps / physiology*
  • Copper / toxicity*
  • Diet
  • Enzyme Activation / drug effects
  • Fish Proteins / genetics*
  • Gene Expression Regulation / drug effects*
  • Gills / drug effects
  • Lipid Peroxidation / drug effects
  • NF-E2-Related Factor 2 / genetics
  • NF-E2-Related Factor 2 / metabolism
  • NF-kappa B / genetics
  • NF-kappa B / metabolism
  • Oxidative Stress / drug effects
  • Oxidoreductases / genetics
  • Oxidoreductases / metabolism
  • Reactive Oxygen Species / metabolism
  • TOR Serine-Threonine Kinases / genetics
  • TOR Serine-Threonine Kinases / metabolism
  • Tight Junctions / drug effects
  • Water Pollutants, Chemical / toxicity

Substances

  • Fish Proteins
  • NF-E2-Related Factor 2
  • NF-kappa B
  • Reactive Oxygen Species
  • Water Pollutants, Chemical
  • Copper
  • Arginine
  • Oxidoreductases
  • TOR Serine-Threonine Kinases