The effects of okadaic acid, a phosphoprotein phosphatase inhibitor, on the contractile response and on myosin light chain phosphorylation were studied in intact lamb tracheal smooth muscle. The effects of okadaic acid were compared to the response of the same fibers stimulated with 1 microM methacholine, a concentration that induces 90% of maximal force. Okadaic acid (50 microM) produced a slow but maximal contraction that was accompanied by an increase in phosphorylation of the 20 kDa light chain of myosin. The myosin light chain phosphorylation pattern induced by okadaic acid, however, differed from that induced by methacholine. Ca2+ depletion, N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W-7), a calmodulin antagonist and 1-(5-isoquinolinylsulfonyl)-2-methylpiperazine (H-7), a protein kinase C inhibitor, blocked or attenuated methacholine-induced contractions but had no significant effect on force development or myosin light chain phosphorylation induced by okadaic acid. These results suggest that phosphorylation of the 20 kDa light chain of myosin is essential for smooth muscle contraction; they also suggest that okadaic acid either uncovers or activates an apparently Ca2+ and calmodulin-independent protein kinase activity that phosphorylates the 20 kDa light chain of myosin at multiple sites.