Topological constraints can affect both equilibrium and dynamic properties of polymer systems and can play a role in the organization of chromosomes. Despite many theoretical studies, the effects of topological constraints on the equilibrium state of a single compact polymer have not been systematically studied. Here we use simulations to address this longstanding problem. We find that sufficiently long unknotted polymers differ from knotted ones in the spatial and topological states of their subchains. The unknotted globule has subchains that are mostly unknotted and form asymptotically compact RG(s)∼s1/3 crumples. However, crumples display a high fractal dimension of the surface db=2.8, forming excessive contacts and interpenetrating each other. We conclude that this topologically constrained equilibrium state resembles a conjectured crumpled globule [Grosberg et al., Journal de Physique, 1988, 49, 2095], but differs from its idealized hierarchy of self-similar, isolated and compact crumples.