Adverse epigenetic signatures by histone methyltransferase Set7 contribute to vascular dysfunction in patients with type 2 diabetes mellitus

Circ Cardiovasc Genet. 2015 Feb;8(1):150-8. doi: 10.1161/CIRCGENETICS.114.000671. Epub 2014 Dec 3.

Abstract

Background: Cellular studies showed that histone methyltransferase Set7 mediates high glucose-induced inflammation via epigenetic regulation of the transcription factor NF-kB. However, the link between Set7 and vascular dysfunction in patients with diabetes mellitus remains unknown. This study was designed to investigate whether Set7 contributes to vascular dysfunction in patients with type 2 diabetes mellitus (T2DM).

Methods and results: Set7-driven epigenetic changes on NF-kB p65 promoter and expression of NF-kB-dependent genes, cyclooxygenase 2 and inducible endothelial nitric oxide synthase, were assessed in peripheral blood mononuclear cells isolated from 68 subjects (44 patients with T2DM and 24 age-matched controls). Brachial artery flow-mediated dilation, 24-hour urinary levels of 8-isoprostaglandin F2α, and plasma adhesion molecules, intercellular cell adhesion molecule-1 and monocyte chemoattractant protein-1, were also determined. Experiments in human aortic endothelial cells exposed to high glucose were performed to elucidate the mechanisms of Set7-driven inflammation and oxidative stress. Set7 expression increased in peripheral blood mononuclear cells from patients with T2DM when compared with controls. Patients with T2DM showed Set7-dependent monomethylation of lysine 4 of histone 3 on NF-kB p65 promoter. This epigenetic signature was associated with upregulation of NF-kB, subsequent transcription of oxidant/inflammatory genes, and increased plasma levels of intercellular cell adhesion molecule-1 and monocyte chemoattractant protein-1. Interestingly, we found that Set7 expression significantly correlated with oxidative marker 8-isoprostaglandin F2α (r=0.38; P=0.01) and flow-mediated dilation (r=-0.34; P=0.04). In human aortic endothelial cells, silencing of Set7 prevented monomethylation of lysine 4 of histone 3 and abolished NF-kB-dependent oxidant and inflammatory signaling.

Conclusions: Set7-induced epigenetic changes contribute to vascular dysfunction in patients with T2DM. Targeting this chromatin-modifying enzyme may represent a novel therapeutic approach to prevent atherosclerotic vascular disease in this setting.

Keywords: diabetes mellitus; epigenomics; inflammation; oxidative stress.

Publication types

  • Clinical Trial
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Aged
  • Cells, Cultured
  • Diabetes Mellitus, Type 2 / enzymology*
  • Diabetes Mellitus, Type 2 / genetics
  • Diabetic Angiopathies / enzymology*
  • Diabetic Angiopathies / genetics
  • Endothelial Cells / enzymology*
  • Epigenesis, Genetic*
  • Female
  • Histone-Lysine N-Methyltransferase / genetics
  • Histone-Lysine N-Methyltransferase / metabolism*
  • Humans
  • Male
  • Middle Aged
  • Promoter Regions, Genetic
  • Transcription Factor RelA / genetics
  • Transcription Factor RelA / metabolism

Substances

  • RELA protein, human
  • Transcription Factor RelA
  • Histone-Lysine N-Methyltransferase
  • SETD7 protein, human