Diabetes arises from insufficient insulin secretion and failure of the β-cell mass to persist and expand. These deficits can be treated with ligands to Gs-coupled G-protein-coupled receptors that raise β-cell cAMP. Here we studied the therapeutic potential of β-cell cAMP-dependent protein kinase (PKA) activity in restoring glucose control using β-caPKA mice. PKA activity enhanced the acute insulin response (AIR) to glucose, which is a primary determinant of the efficacy of glucose clearance. Enhanced AIR improved peripheral insulin action, leading to more rapid muscle glucose uptake. In the setting of pre-established glucose intolerance caused by diet-induced insulin resistance or streptozotocin-mediated β-cell mass depletion, PKA activation enhanced β-cell secretory function to restore glucose control, primarily through augmentation of the AIR. Enhanced AIR and improved glucose control were maintained through 16 weeks of a high-fat diet and aging to 1 year. Importantly, improved glucose tolerance did not increase the risk for hypoglycemia, nor did it rely upon hyperinsulinemia or β-cell hyperplasia, although PKA activity was protective for β-cell mass. These data highlight that improving β-cell function through the activation of PKA has a large and underappreciated capacity to restore glucose control with minimal risk for adverse side effects.
© 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.