We investigated properties of the rotavirus genome segment 11 protein. A rotavirus SA11 genome segment 11 cDNA which contains the entire coding region was sequenced and inserted into the baculovirus transfer vector pVL941. Recombinants containing gene 11 cDNA were selected, and the gene 11 product expressed in Spodoptera frugiperda cells infected with these recombinants was inoculated into guinea pigs to produce hyperimmune antiserum. Characterization of the antiserum showed that it recognized a primary translation product with a molecular weight of 26,000 (26K protein) in recombinant-infected insect cells, in SA11-infected monkey kidney cells, and in cell-free translation reactions programmed with SA11 mRNA. A modified 28K product was also detected but only in SA11-infected monkey kidney cells. The 26K 28K proteins were shown to be phosphorylated in infected monkey kidney cells, and the 26K protein was phosphorylated in insect cells. We were unable to identify what type of modification caused the molecular weight shift to 28,000 in infected monkey kidney cells. Large amounts of the gene 11 product were detected by immunofluorescence in discrete foci in the cytoplasm of infected monkey kidney cells. Viruses of all known serotypes were also detected by immunofluorescence by using hyperimmune antiserum to the SA11 gene 11 product. The antiserum reacted with particle-depleted cytosol fractions but did not react with purified virus particles by immunoprecipitation or immunoblotting; it also did not neutralize virus infectivity in plaque reduction neutralization assays. Therefore, we conclude that the primary gene 11 product is a nonstructural phosphoprotein which we designated NS26.