Background & aims: We previously demonstrated that major vault protein (MVP) is a novel virus-induced host factor and its expression upregulates type-I interferon production, leading to cellular antiviral response. However, it remains unclear whether the antiviral function of MVP is impaired during hepatitis B virus (HBV) infection and what mechanisms are involved. Therefore, the aim of this study was to assess whether HBV can alter MVP expression despite the lack of type-I IFN induction and shed light on the underlying mechanisms HBV utilizes to evade host innate immune response.
Methods: The ability of HBV surface and e antigens to inhibit MVP signaling in interferon induction pathways was evaluated by co-immunoprecipitation, immunofluorescence, quantitative RT-PCR, Western blot and reporter assays.
Results: In our current study, we found high levels of MVP in peripheral blood mononuclear cells, sera, and liver tissue from HBV-infected patients relative to healthy individuals. We determined that MVP intracellularly associates with MyD88, an adapter protein involved in virus-triggered induction of type-I IFN. Protein truncation analysis revealed that the middle domain of MVP (amino acid residues 310-620) was essential for MyD88 binding. Conversely, HBV inhibited MVP-induced type-I IFN production by suppressing MVP/MyD88 interaction. HBV antigens, both HBsAg and HBeAg, suppressed this interaction by competitively binding to the essential MyD88 binding region of MVP and limiting downstream IFN signaling.
Conclusions: MVP is a virus-induced protein capable of binding with MyD88 leading to type-I IFN production. HBV may evade an immune response by disrupting this interaction and limiting type-I IFN antiviral activity.
Keywords: Immune evasion; Major vault protein; MyD88; Viral infection.
Copyright © 2015 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.