Cancer-associated fibroblast-targeted strategy enhances antitumor immune responses in dendritic cell-based vaccine

Cancer Sci. 2015 Feb;106(2):134-42. doi: 10.1111/cas.12584. Epub 2015 Jan 16.

Abstract

Given the close interaction between tumor cells and stromal cells in the tumor microenvironment (TME), TME-targeted strategies would be promising for developing integrated cancer immunotherapy. Cancer-associated fibroblasts (CAFs) are the dominant stromal component, playing critical roles in generation of the pro-tumorigenic TME. We focused on the immunosuppressive trait of CAFs, and systematically explored the alteration of tumor-associated immune responses by CAF-targeted therapy. C57BL/6 mice s.c. bearing syngeneic E.G7 lymphoma, LLC1 Lewis lung cancer, or B16F1 melanoma were treated with an anti-fibrotic agent, tranilast, to inhibit CAF function. The infiltration of immune suppressor cell types, including regulatory T cells and myeloid-derived suppressor cells, in the TME was effectively decreased through reduction of stromal cell-derived factor-1, prostaglandin E2 , and transforming growth factor-β. In tumor-draining lymph nodes, these immune suppressor cell types were significantly decreased, leading to activation of tumor-associated antigen-specific CD8(+) T cells. In addition, CAF-targeted therapy synergistically enhanced multiple types of systemic antitumor immune responses such as the cytotoxic CD8(+) T cell response, natural killer activity, and antitumor humoral immunity in combination with dendritic cell-based vaccines; however, the suppressive effect on tumor growth was not observed in tumor-bearing SCID mice. These data indicate that systemic antitumor immune responses by various immunologic cell types are required to bring out the efficacy of CAF-targeted therapy, and these effects are enhanced when combined with effector-stimulatory immunotherapy such as dendritic cell-based vaccines. Our mouse model provides a novel rationale with TME-targeted strategy for the development of cell-based cancer immunotherapy.

Keywords: Cancer-associated fibroblasts; dendritic cell-based vaccine immunotherapy; suppressor immune cells; tranilast; tumor microenvironment.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Antineoplastic Agents / immunology*
  • CD8-Positive T-Lymphocytes / drug effects
  • CD8-Positive T-Lymphocytes / immunology
  • Cancer Vaccines / immunology*
  • Cell Line, Tumor
  • Dendritic Cells / drug effects
  • Dendritic Cells / immunology*
  • Female
  • Fibroblasts / drug effects
  • Fibroblasts / immunology*
  • Immunity, Cellular / drug effects
  • Immunity, Cellular / immunology*
  • Immunity, Humoral / drug effects
  • Immunity, Humoral / immunology*
  • Immunotherapy / methods
  • Killer Cells, Natural / drug effects
  • Killer Cells, Natural / immunology
  • Lymph Nodes / drug effects
  • Lymph Nodes / immunology
  • Mice
  • Mice, Inbred C57BL
  • Mice, SCID
  • Neoplasms / drug therapy
  • Neoplasms / immunology*
  • T-Lymphocytes, Regulatory / drug effects
  • T-Lymphocytes, Regulatory / immunology
  • Tumor Microenvironment / drug effects
  • Tumor Microenvironment / immunology
  • ortho-Aminobenzoates / pharmacology

Substances

  • Antineoplastic Agents
  • Cancer Vaccines
  • ortho-Aminobenzoates
  • tranilast