The quest for ever more selective kinase inhibitors as potential future drugs has yielded a large repertoire of chemical probes that are selective for specific kinase conformations. These probes have been useful tools to obtain structural snapshots of kinase conformational plasticity. Similarly, kinetic and thermodynamic inhibitor binding experiments provide glimpses at the time scales and energetics of conformational interconversions. These experimental insights are complemented by computational predictions of conformational energy landscapes and simulations of conformational transitions and of the process of inhibitors binding to the protein kinase domain. A picture emerges in which highly selective inhibitors capitalize on the dynamic nature of kinases.