Molecular epidemiology represents a powerful approach to elucidate the complex epidemiological cycles of multi-host pathogens, such as Anaplasma phagocytophilum. A. phagocytophilum is a tick-borne bacterium that affects a wide range of wild and domesticated animals. Here, we characterized its genetic diversity in populations of French cattle; we then compared the observed genotypes with those found in horses, dogs, and roe deer to determine whether genotypes of A. phagocytophilum are shared among different hosts. We sampled 120 domesticated animals (104 cattle, 13 horses, and 3 dogs) and 40 wild animals (roe deer) and used multilocus sequence analysis on nine loci (ankA, msp4, groESL, typA, pled, gyrA, recG, polA, and an intergenic region) to characterize the genotypes of A. phagocytophilum present. Phylogenic analysis revealed three genetic clusters of bacterial variants in domesticated animals. The two principal clusters included 98% of the bacterial genotypes found in cattle, which were only distantly related to those in roe deer. One cluster comprised only cattle genotypes, while the second contained genotypes from cattle, horses, and dogs. The third contained all roe deer genotypes and three cattle genotypes. Geographical factors could not explain this clustering pattern. These results suggest that roe deer do not contribute to the spread of A. phagocytophilum in cattle in France. Further studies should explore if these different clusters are associated with differing disease severity in domesticated hosts. Additionally, it remains to be seen if the three clusters of A. phagocytophilum genotypes in cattle correspond to distinct epidemiological cycles, potentially involving different reservoir hosts.