Rationale and objectives: To investigate the usefulness of the statistical shape model (SSM) for the quantification of liver shape to evaluate hepatic fibrosis.
Materials and methods: Ninety-one subjects (45 men and 46 women; age range, 20-75 years) were included in this retrospective study: 54 potential liver donors and 37 patients with chronic liver disease. The subjects were classified histopathologically according to the fibrosis stage as follows: F0 (n = 55); F1 (n = 6); F2 (3); F3 (n = 1); and F4 (n = 26). Each subject underwent contrast-enhanced computed tomography (CT) using a 64-channel scanner (0.625-mm slice thickness). An abdominal radiologist manually traced the liver boundaries on every CT section using an image workstation; the boundaries were used for subsequent analyses. An SSM was constructed by the principal component analysis of the subject data set, which defined a parametric model of the liver shapes. The shape parameters were calculated by fitting SSM to the segmented liver shape of each subject and were used for the training of a linear support vector regression (SVR), which classifies the liver fibrosis stage to maximize the area under the receiver operating characteristic curve (AUC). SSM/SVR models were constructed and were validated in a leave-one-out manner. The performance of our technique was compared to those of two previously reported types of caudate-right lobe ratios (C/RL-m and C/RL-r).
Results: In our SSM/SVR models, the AUC values for the classification of liver fibrosis were 0.96 (F0 vs. F1-4), 0.95 (F0-1 vs. F2-4), 0.96 (F0-2 vs. F3-4), and 0.95 (F0-3 vs. F4). These values were significantly superior to AUC values using the C/RL-m or C/RL-r ratios (P < .005).
Conclusions: SSM was useful for estimating the stage of hepatic fibrosis by quantifying liver shape.
Keywords: Quantitative evaluation; cirrhosis; computed tomography, x-ray; diagnosis, computer-assisted; fibrosis, liver.
Copyright © 2015 AUR. Published by Elsevier Inc. All rights reserved.