Epidermal Growth Factor Receptor targeting in non-small cell lung cancer: revisiting different strategies against the same target

Curr Drug Targets. 2014;15(14):1273-83. doi: 10.2174/138945011514141216092935.

Abstract

Epidermal Growth Factor Receptor (EGFR) tyrosine kinase inhibitors (TKIs) have changed the paradigm of treatment in non-small cell lung cancer (NSCLC). The molecular biology study of EGFR has led to clinical trials that select patients more accurately, regarding the presence of EGFR activating mutations. Nonetheless, a lack of response or a temporary condition of the response has been detected in patients on EGFR TKIs. This has urged to study potential resistance mechanisms underneath. The most important ones are the presence of secondary mutations in EGFR, such as T790M, or the overexpression of mesenchymal-epithelial transition factor (MET) that may explain why patients who initially respond to EGFR TKIs, may ultimately become refractory. Several approaches have been taken and new drugs both targeting EGFR resistance-mutation or MET are currently being developed. Here we review and update the EGFR biological pathway as well as the clinical data leading to approval of the EGFR TKIs currently in the market. New compounds under investigation targeting resistance mutations or dually targeting EGFR and other relevant receptors are also reviewed and discussed.

Publication types

  • Review

MeSH terms

  • Antineoplastic Agents / pharmacology*
  • Antineoplastic Agents / therapeutic use
  • Carcinoma, Non-Small-Cell Lung / drug therapy*
  • Carcinoma, Non-Small-Cell Lung / genetics
  • Clinical Trials as Topic
  • Drug Design
  • Drug Resistance, Neoplasm / drug effects
  • ErbB Receptors / antagonists & inhibitors
  • ErbB Receptors / genetics
  • Humans
  • Lung Neoplasms / drug therapy*
  • Lung Neoplasms / genetics
  • Mutation
  • Protein Kinase Inhibitors / pharmacology*
  • Protein Kinase Inhibitors / therapeutic use

Substances

  • Antineoplastic Agents
  • Protein Kinase Inhibitors
  • EGFR protein, human
  • ErbB Receptors