Excessive energy is stored in white adipose tissue as triacylglycerols in birds as well as in mammals. Although β2-adrenergic receptor agonists reduce adipose tissue mass in birds, the underlying mechanism remains unclear. The aim of the current study was to examine the effects of a single intraperitoneal injection of the β2-adrenergic receptor agonist, clenbuterol, on the abdominal fat pad tissue development. Thirty-three chicks at 1-day-old were given a single intraperitoneal injection of clenbuterol (0.1mg/kg body weight) or phosphate-buffered saline. At 2 weeks post-dose, the weight of the abdominal fat tissue was decreased in the clenbuterol-injected chicks, and small adipocyte-like cells were observed in the abdominal fat pad tissue of the clenbuterol-injected chicks. Then, the expression of mRNAs encoding genes related to avian adipogenesis was examined in the abdominal fat pat tissue. The expression of mRNAs encoding Krüppel-like zinc finger transcription factor 5 (KLF-5), KLF-15, and zinc finger protein 423 in the abdominal fat pad tissue of the clenbuterol-injected chicks was significantly lower (P<0.05) than that of the control chicks, while the expression of mRNA encoding peroxisome proliferator-activated receptor-gamma was not affected. In addition, both mRNA expression (P<0.05) and enzymatic activity (P<0.05) of fatty acid synthase (FAS) were decreased in the abdominal fat pad tissue of the clenbuterol-injected chicks, while clenbuterol injection did not affect FAS activity in liver. These results suggested that a single injection with clenbuterol into newly hatched chicks reduces their abdominal fat pad mass possibly via disrupting adipocyte development during later growth stages.
Keywords: Adipocytes; Adipose tissue; Chicken; Lipid metabolism; Receptors adrenergic beta-2.
Copyright © 2014 Elsevier Inc. All rights reserved.