Twin boundary-assisted lithium ion transport

Nano Lett. 2015 Jan 14;15(1):610-5. doi: 10.1021/nl504087z. Epub 2014 Dec 22.

Abstract

With the increased need for high-rate Li-ion batteries, it has become apparent that new electrode materials with enhanced Li-ion transport should be designed. Interfaces, such as twin boundaries (TBs), offer new opportunities to navigate the ionic transport within nanoscale materials. Here, we demonstrate the effects of TBs on the Li-ion transport properties in single crystalline SnO2 nanowires. It is shown that the TB-assisted lithiation pathways are remarkably different from the previously reported lithiation behavior in SnO2 nanowires without TBs. Our in situ transmission electron microscopy study combined with direct atomic-scale imaging of the initial lithiation stage of the TB-SnO2 nanowires prove that the lithium ions prefer to intercalate in the vicinity of the (101̅) TB, which acts as conduit for lithium-ion diffusion inside the nanowires. The density functional theory modeling shows that it is energetically preferred for lithium ions to accumulate near the TB compared to perfect neighboring lattice area. These findings may lead to the design of new electrode materials that incorporate TBs as efficient lithium pathways, and eventually, the development of next generation rechargeable batteries that surpass the rate performance of the current commercial Li-ion batteries.

Keywords: Twin boundary; atomic scale; in situ STEM; lithium-ion transport; tin oxide nanowires.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.