Radiotherapy is a major treatment modality for head and neck squamous cell carcinoma (HNSCC). Up to 50% of patients with locally advanced disease relapse after radical treatment and there is therefore a need to develop predictive bomarkers for clinical use that allow the selection of patients who are likely to respond. MicroRNA (miRNA) expression profiling of a panel of HNSCC tumours with and without recurrent disease after surgery and radiotherapy detected miR-196a as one of the highest upregulated miRNAs in the poor prognostic group. To further study the role of miR-196a, its expression was determined in eight head and neck cancer cell lines. Overexpression of miR-196a in HNSCC cells, with low endogenous miR-196a expression, significantly increased cell proliferation, migration and invasion, and induced epithelial to mesenchymal transition. Conversely, miR-196a knockdown in cells with high endogenous expression levels significantly reduced oncogenic behaviour. Importantly, overexpression of miR-196a increased radioresistance of cells as measured by gamma H2AX staining and MTT survival assay. Annexin A1 (ANXA1), a known target of miR-196a, was found to be directly modulated by miR-196a as measured by luciferase assay and confirmed by Western blot analysis. ANXA1 knockdown in HNSCC exhibited similar phenotypic effects to miR-196a overexpression, suggesting the oncogenic effect of miR-196a may at least be partly regulated through suppression of ANXA1. In conclusion, this study identifies miR-196a as a potential important biomarker of prognosis and response of HNSCC to radiotherapy. Furthermore, our data suggest that miR-196a and/or its target gene ANXA1 could represent important therapeutic targets in HNSCC.
Keywords: MicroRNA-196a; annexin A1; biomarkers; head and neck squamous cell carcinoma; radiosensitivity.
© 2014 UICC.