Background: The JAK-STAT pathway is an important signaling pathway downstream of multiple cytokine and growth factor receptors. Dysregulated JAK-STAT signaling has been implicated in the pathogenesis of multiple human malignancies.
Objective: Given this pivotal role of JAK-STAT dysregulation, it is important to identify patients with an overactive JAK-STAT pathway for possible treatment with JAK inhibitors.
Methods: We developed a gene signature assay to detect overactive JAK-STAT signaling. The cancer cell line encyclopedia and associated gene-expression data were used to correlate the activation status of STAT5 with the induction of a set of STAT5 target genes.
Results: Four target genes were identified (PIM1, CISH, SOCS2, and ID1), the expression of which correlated significantly with pSTAT5 status in 40 hematologic tumor cell lines. In pSTAT5-positive models, the expression of the gene signature genes decreased following ruxolitinib treatment, which corresponded to pSTAT5 downmodulation. In pSTAT5-negative cell lines, neither pSTAT5 modulation nor a change in signature gene expression was observed following ruxolitinib treatment.
Conclusions: The gene signature can potentially be used to stratify or enrich for patient populations with activated JAK-STAT5 signaling that might benefit from treatments targeting JAK-STAT signaling. Furthermore, the 4-gene signature is a predictor of the pharmacodynamic effects of ruxolitinib.
Keywords: JAK-STAT; Ruxolitinib; gene signature; pSTAT5.