Purpose: Intraocular pressure (IOP) is an important clinical parameter in the evaluation of ocular health. Elevated IOP is a major risk factor for primary open-angle glaucoma (POAG). The goal of this study was to identify rare and less common variants that influence IOP.
Methods: We performed an exome array analysis in a subset of 1660 individuals from a population-based cohort, the Beaver Dam Eye Study. Associations with IOP were tested on 45,849 single nucleotide variants and 12,390 autosomal genes across the genome.
Results: Intraocular pressure was suggestively associated with novel variants located in FAR2 at 12p11.22 (rs4931170, P = 1.2 × 10(-5)), in GGA3 at 17q25.1 (rs52809447, P = 6.7 × 10(-5)), and in PKDREJ at 22q13.31 (rs7291444, P = 7.4 × 10(-5)). Gene-based analysis found suggestive associations between IOP and the genes HAP1, MTBP, FREM3, and PHF12. We successfully replicated the associations with GAS7 (P = 7.4 × 10(-3)) for IOP, and also identified a previously reported POAG locus in the CAV1/CAV2 region to be associated with IOP (P = 3.3 × 10(-3)). This association was confirmed in a meta-analysis with three published genome-wide association studies (Pcombined = 4.0 × 10(-11)).
Conclusions: Our results suggest that novel genetic variants and genes with multiple, less common variants may play a role in the control of IOP. The implication of the caveolin genes, CAV1/CAV2, as a common genetic factor influencing both IOP variations and POAG may provide new insights of the underlying mechanism leading to glaucoma and glaucomatous visual field loss.
Keywords: SNP; exome; intraocular pressure.
Copyright 2015 The Association for Research in Vision and Ophthalmology, Inc.