The tumor suppressor gene TP53 and its regulator MDM2 are both key players involved in multiple pathways including apoptosis, cellular transcriptional control and cell cycle regulation. Common germline polymorphisms in these genes may affect colorectal cancer (CRC) susceptibility. An arginine-to-proline substitution at codon 72 in the TP53 gene is reported to decrease apoptotic potential, while a thymine-to-guanine polymorphism at nucleotide 309 (named SNP309) of murine double minute 2 MDM2 gene increases its transcription. These two polymorphisms therefore may be of importance in colorectal carcinogenesis. The relation of these polymorphisms to colorectal cancer in the Algerian population was addressed in this study. DNA samples from 121 controls and 116 cases were genotyped for these two polymorphisms by PCR/RFLP then confirmed by sequencing. Unexpectedly no significant association was found between this potential marker TP53 Arg72Pro and CRC (p > 0.05). However, our findings reveal that individuals with the MDM2 SNP309 GG genotype have a low risk of CRC as compared to the TT genotype (OR = 0.49; 95 % CI: 0.24-0.98, p = 0.04), with more significance for females (OR = 0.16; 95 % CI: 0.06-0.41, p < 0.05). Moreover, no significant association was observed between the combined TP53 and MDM2 genotypes and CRC. Contrary to initial expectations that the GG genotype with high MDM2 levels would increase cancer risk, our results demonstrate that the MDM2 SNP309 GG genotype is associated with decreased risk of colorectal cancer. This is suggesting that other mechanisms independent of increased MDM2 levels can influence cancer susceptibility.