Based on first-principles calculations, we systematically investigated the topological surface states of Bi and Sb thin films of 1-5 bilayers in (111) orientation without and with H(F) adsorption, respectively. We find that compared with clean Bi and Sb films, a huge band gap advantageous to observe the quantum spin Hall effect can be opened in chemically decorated bilayer Bi and Sb films, and the quantum phase transition from trivial (non-trivial) to non-trivial (trivial) phase is induced for a three bilayer Bi film and single (four) bilayer Sb film. Surface adsorption is an effective tool to manipulate the geometry, electronic structures and topological properties of film materials.