The fungus species Wolfiporia extensa has a long history of medicinal usage and has also been commercially used to formulate nutraceuticals and functional foods in certain Asian countries. In the present study, a practical and promising method has been developed to discriminate the dried sclerotium of W. extensa collected from different geographical sites based on UV spectroscopy together with chemometrics methods. Characteristic fingerprint of low polar constituents of sample extracts that originated from chloroform has been obtained in the interval 250-400 nm. Chemometric pattern recognition methods such as partial least squares discriminant analysis (PLS-DA) and hierarchical cluster analysis (HCA) were applied to enhance the authenticity of discrimination of the specimens. The results showed that W. extensa samples were well classified according to their geographical origins. The proposed method can fully utilize diversified fingerprint characteristics of sclerotium of W. extensa and requires low-cost equipment and short-time analysis in comparison with other techniques. Meanwhile, this simple and efficient method may serve as a basis for the authentication of other medicinal fungi.