When populations experience suboptimal conditions, the mechanisms involved in the regulation of phenotypic variation can be challenged, resulting in increased phenotypic variance. This kind of disturbance can be diagnosed by using morphometric tools to study morphological patterns at different hierarchical levels and evaluate canalization, developmental stability, integration, modularity, and allometry. We assess the effect of urbanization on phenotypic variation in the common wall lizard (Podarcis muralis) by using geometric morphometrics to assess disturbance to head shape development. The head shapes of urban lizards were more variable and less symmetric, suggesting that urban living is more likely to disturb development. Head shape variation was congruent within and across individuals, which indicated that canalization and developmental stability are two related phenomena in these organisms. Furthermore, urban lizards exhibited smaller mean head sizes, divergent size-shape allometries, and increased deviation from within-group allometric lines. This suggests that mechanisms regulating head shape allometry may also be disrupted. The integrated evaluation of several measures of developmental instability at different hierarchical levels, which provided in this case congruent results, can be a powerful methodological guide for future studies, as it enhances the detection of environmental disturbances on phenotypic variation and aids biological interpretation of the results.