Despite effective treatment, HIV is not completely eliminated from the infected organism because of the existence of viral reservoirs. A major reservoir consists of infected resting CD4+ T cells, mostly of memory type, that persist over time due to the stable proviral insertion and a long cellular lifespan. Resting cells do not produce viral particles and are protected from viral-induced cytotoxicity or immune killing. However, these latently infected cells can be reactivated by stochastic events or by external stimuli. The present review focuses on novel genome-wide technologies applied to the study of integration, transcriptome, and proteome characteristics and their recent contribution to the understanding of HIV latency.