Background: Prefabricated flaps are an ideal alternative to repair massive and complex tissue defects. Nevertheless, the risk of necrosis due to unpredictable blood supplies is a major obstacle to the application of prefabricated flaps. The survival of a prefabricated flap depends on the neovascularization between the vascular carrier and the donor tissue. Here, we proposed that the iron chelator, desferrioxamine (DFX), owned therapeutic effects that promoted the neovascularization of prefabricated flaps.
Methods: An abdominal prefabricated flap model was created in rats via a 2-stage operation. The rats were allocated into 4 groups as follows: 2 groups of rats received DFX treatments during the first or the second stage of the operation, respectively; 1 group of rats received a delay procedure 1 week before the second operation; and the final group was used as a blank control. Flap survival rates and capillary densities were evaluated between groups. The influence of DFX on the dermal fibroblasts was also studied in vitro.
Results: Desferrioxamine treatment during the first stage of the operation greatly increased flap survival rate compared to the blank control. The results were similar to those produced by the delay treatment. The vessel count results were consistent with the flap survival rate findings. In vitro, DFX treatment up-regulated the expression levels of several angiogenic factors in the dermal fibroblasts. Nevertheless, DFX treatment during the second stage of the operation was therapeutically detrimental.
Conclusions: The application of DFX around the time of vascular carrier implantation greatly promoted neovascularization of prefabricated flaps, but was therapeutically detrimental after the flaps had been elevated.