Up-regulation of multidrug resistance-associated protein 1 (MRP1) is regarded as one of the main causes for multidrug resistance (MDR) of tumor cells, leading to failure of chemotherapy-based treatment for a multitude of cancers. However, whether silencing the overexpressed MRP1 is sufficient to reverse MDR has yet to be validated. This study demonstrated that RNAi-based knockdown of MRP1 reversed the increased efflux ability and MDR efficiently. Two different short haipin RNAs (shRNAs) targeting MRP1 were designed and inserted into pSilence- 2.1-neo. The shRNA recombinant plasmids were transfected into cis-dichlorodiamineplatinum-resistant A549 lung (A549/DDP) cells, and then shRNA expressing cell clones were collected and maintained. Real time PCR and immunofluorescence staining for MRP1 revealed a high silent efficiency of these two shRNAs. Functionally, shRNA-expressing cells showed increased rhodamine 123 retention in A549/DDP cells, indicating reduced efflux ability of tumor cells in the absence of MRP1. Consistently, MRP1-silent cells exhibited decreased resistance to 3- (4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) and DDP, suggesting reversal of MDR in these tumor cells. Specifically, MRP1 knockdown increased the DDP-induced apoptosis of A549/DDP cells by increased trapping of their cell cycling in the G2 stage. Taken together, this study demonstrated that RNAi- based silencing of MRP1 is sufficient to reverse MDR in tumor cells, shedding light on possible novel clinical treatment of cancers.