Microsatellite development and flow cytometry in the African tree genus Afzelia (Fabaceae, Caesalpinioideae) reveal a polyploid complex

Appl Plant Sci. 2015 Jan 7;3(1):apps.1400097. doi: 10.3732/apps.1400097. eCollection 2015 Jan.

Abstract

Premise of the study: Microsatellites were developed in the vulnerable African rainforest tree Afzelia bipindensis to investigate gene flow patterns. •

Methods and results: Using 454 GS-FLX technique, 16 primer sets were identified and optimized, leading to 11 polymorphic and readable markers displaying each six to 25 alleles in a population. Up to four alleles per individual were found in each of the loci, without evidence of fixed heterozygosity, suggesting an autotetraploid genome. Cross-amplification succeeded for all loci in the African rainforest species A. pachyloba and A. bella, which appeared tetraploid, and for most loci in the African woodland species A. africana and A. quanzensis, which appeared diploid, but failed in the Asian species A. xylocarpa. Flow cytometry confirmed the suspected differences in ploidy. •

Conclusions: African Afzelia species are diploid or tetraploid, a situation rarely documented in tropical trees. These newly developed microsatellites will help in the study of their mating system and gene flow patterns.

Keywords: Afzelia; Caesalpinioideae; Fabaceae; microsatellites; next-generation sequencing; polyploidy; tropical timber tree.