Inductive measurement of optically hyperpolarized phosphorous donor nuclei in an isotopically enriched silicon-28 crystal

Phys Rev Lett. 2014 Dec 31;113(26):267604. doi: 10.1103/PhysRevLett.113.267604. Epub 2014 Dec 30.

Abstract

We experimentally demonstrate the first inductive readout of optically hyperpolarized phosphorus-31 donor nuclear spins in an isotopically enriched silicon-28 crystal. The concentration of phosphorus donors in the crystal was 1.5×10(15) cm(-3), 3 orders of magnitude lower than has previously been detected via direct inductive detection. The signal-to-noise ratio measured in a single free induction decay from a 1 cm(3) sample (≈10(15) spins) was 113. By transferring the sample to an X-band ESR spectrometer, we were able to obtain a lower bound for the nuclear spin polarization at 1.7 K of ∼64%. The (31)P-T2 measured with a Hahn echo sequence was 420 ms at 1.7 K, which was extended to 1.2 s with a Carr Purcell cycle. The T1 of the (31)P nuclear spins at 1.7 K is extremely long and could not be determined, as no decay was observed even on a time scale of 4.5 h. Optical excitation was performed with a 1047 nm laser, which provided above-band-gap excitation of the silicon. The buildup of the hyperpolarization at 4.2 K followed a single exponential with a characteristic time of 577 s, while the buildup at 1.7 K showed biexponential behavior with characteristic time constants of 578 and 5670 s.