The iboga alkaloids have attracted considerable attention in both the scientific community and popular media due to their reported ability to reverse or markedly diminish cravings for, and self-administration of, the major drugs of abuse. We have developed three new intramolecular C-H functionalization procedures leading to the core seven-membered ring of the iboga skeleton, a cyclization that proved to be highly challenging. The electrophilic palladium salt Pd(CH3CN)4(BF4)2 was effective for the cyclization of diverse N-(2-arylethyl)isoquinuclidines with yields of 10-35%. A two-step, bromination-reductive Heck reaction protocol was also effective for the synthesis of ibogamine in 42% yield. Finally, a direct Ni(0)-catalyzed C-H functionalization provided the benzofuran analogues of ibogamine (74%) and epi-ibogamine (38%). Although each approach suffers from significant shortcomings, in combination, the methods described provide practical routes to diverse ibogamine analogues.