Recent studies have suggested that deficits in executive function contribute to freezing of gait (FOG), an episodic disturbance common among patients with Parkinson's disease (PD). To date, most findings provide only indirect evidence of this relationship. Here, we evaluated a more direct link between FOG and frontal lobe dysfunction. Functional, near infrared spectroscopy measured frontal activation, i.e., oxygenated hemoglobin (HbO2) levels in Brodmann area 10 before and during FOG. Eleven patients with PD and eleven healthy older adults were studied. Changes in frontal lobe activation before and during FOG that occurred during turns were determined. Altogether, 49 FOG episodes were observed-28 occurred during turns that were anticipated (i.e., the patient knew in advance that the turn was coming), 21 during unanticipated turns that were performed "abruptly", according to the examiner's request. During anticipated turns, HbO2 increased by 0.22 ± 0.08 µM (p = 0.004) before FOG and by an additional 0.19 ± 0.13 µM (p = 0.072) during FOG. In contrast, during unanticipated turns, HbO2 did not increase before or during FOG. HbO2 decreased by 0.32 ± 0.08 µM (p = 0.004) during turns without FOG; in healthy controls HbO2 did not change during turns. These findings support the existence of an association between FOG episodes and changes in frontal lobe HbO2. Increased activation in Brodmann area 10 before FOG, specifically during anticipated turns, highlights the connections between motor planning, information processing, and FOG. These results support the idea that alterations in executive control play a role in this debilitating motor disturbance.