Interindividual variability in analgesic effects of nonsteroidal anti-inflammatory drugs prescribed for sickle cell disease (SCD) pain is attributed to polymorphisms in the CYP2C8 and CYP2C9 enzymes. We described CYP2C8 and CYP2C9 genotype/phenotype profiles and frequency of emergency department (ED) visits for pain management in an African American SCD patient cohort. DNA from 165 unrelated patients was genotyped for seven CYP2C8 and 15 CYP2C9 alleles using the iPLEX ADME PGx multiplexed panel. CYP2C8*1 (0.806),*2 (0.164), *3 (0.018), and *4 (0.012) alleles were identified. Genotype frequencies were distributed as homozygous wild type (66.7%), heterozygous (27.8%), and homozygous variant/compound heterozygous (5.4%), respectively. CYP2C9*1 (0.824), *2 (0.027), *3 (0.012), *5 (0.009), *6 (0.009), *8 (0.042), *9 (0.061), and *11(0.015) were observed with extensive (68.5%), intermediate (18.1%) and poor predicted metabolizers (0.6%), respectively. Fifty-two and 55 subjects, respectively had at least one variant CYP2C8 or CYP2C9 allele. Although the distribution of the CYP2C9 (p = 0.0515) phenotypes was marginally significantly in high and low ED users; some CYP2C8 and CYP2C9 allelic combinations observed in 15.2% (25) of the cohort are associated with higher risks for analgesic failure. CYP2C8 and CYP2C9 preemptive genotyping could potentially enable clinicians to identify patients with impaired metabolic phenotypes.
Keywords: CYP2C8; CYP2C9; NSAIDs; pharmacogenetics; sickle cell disease.
© 2015 Wiley Periodicals, Inc.