MEG3 as a tumor suppressor has been reported to be linked with pathogenesis of malignancies including hepatocellular carcinoma (HCC). However, the mechanism of MEG3 in HCC still remains unclear. In our study, the aberrant decreased level of MEG3 in 72 tumor tissues obtained from HCC patients and cell lines was examined by using real-time PCR. The inhibition affection in proliferation and inducing affection in apoptosis was further confirmed in vivo and vitro, we also demonstrated that MEG3 regulates HCC cell proliferation and apoptosis partially via the accumulation of p53. Besides, the hypermethylation of MEG3 in promoter region was identified by bisulfite sequencing while MEG3 increased with the inhibition of methylation. Subsequently, UHRF1, a new identified oncogene which is required for DNA methylation and recruits, was investigated. A negative correlation of MEG3 and UHRF1 expression was verified in primary HCC tissues. Down-regulation of UHRF1 induced MEG3 expression in HCC cell lines, which could be reversed by the up-regulation of UHRF1. In addition, up-regulation of MEG3 in HCC cells partially diminished the promotion of proliferation induced by UHRF1. Moreover, Kaplan-Meier analysis demonstrated that the patients with low expression of MEG3 indicated worse overall and relapse-free survivals compared with high expression of MEG3. Cox proportional hazards analyses showed that MEG3 expression was an independent prognostic factor for HCC patients. In conclusion, we demonstrated MEG3, acting as a potential biomarker in predicting the prognosis of HCC, was regulated by UHRF1 via recruiting DNMT1 and regulated p53 expression.
Keywords: biomarker; hypermethylation; long non-coding RNA.
© 2015 Wiley Periodicals, Inc.