Homodinuclear lanthanide {Ln2} (Ln = Gd, Tb, Dy, Eu) complexes prepared from an o-vanillin based ligand: luminescence and single-molecule magnetism behavior

Dalton Trans. 2015 Mar 7;44(9):4328-40. doi: 10.1039/c4dt03429e.

Abstract

Four dinuclear lanthanide complexes [Gd2 (H2L)2 (µ-piv)2 (piv)2]·2CHCl3 (1), [Tb2 (H2L)2 (µ-piv)2 (piv)2]·2CHCl3 (2), [Dy2 (H2L)2 (µ-piv)2 (piv)2]·2CHCl3 (3) and [Eu2 (H2L)2 (µ-piv)2 (piv)2]·2CHCl3 (4) were synthesized by the reaction of appropriate Ln(III) chloride salts and a multidentate ligand, 2,2'-(2-hydroxy-3-methoxy-5-methylbenzylazanediyl)diethanol (H3L) in the presence of pivalic acid. 1-4 are neutral and are held by two monoanionic, [H2L](-) ligands. The two lanthanide ions are doubly bridged to each other via two phenolate oxygen atoms. Both the lanthanide ions are nine coordinated and possess a distorted capped square antiprism geometry. Photophysical studies reveal that Tb(3+) (2) and Dy(3+) (3) complexes display strong ligand-sensitized lanthanide-characteristic emission. The Tb(3+) complex (2) shows a very high overall quantum yield of 76.2% with a lifetime of 1.752 ms. Magnetic studies reveal single-molecule magnet behavior for 3 which shows in its ac susceptibility studies a two-step slow relaxation yielding two effective relaxation energy barriers of ΔE = 8.96 K and 35.51 K.