Effect of bias voltage and temperature on lifetime of wireless neural interfaces with Al ₂O₃ and parylene bilayer encapsulation

Biomed Microdevices. 2015 Feb;17(1):1. doi: 10.1007/s10544-014-9904-y.

Abstract

The lifetime of neural interfaces is a critical challenge for chronic implantations, as therapeutic devices (e.g., neural prosthetics) will require decades of lifetime. We evaluated the lifetime of wireless Utah electrode array (UEA) based neural interfaces with a bilayer encapsulation scheme utilizing a combination of alumina deposited by Atomic Layer Deposition (ALD) and parylene C. Wireless integrated neural interfaces (INIs), equipped with recording version 9 (INI-R9) ASIC chips, were used to monitor the encapsulation performance through radio-frequency (RF) power and telemetry. The wireless devices were encapsulated with 52 nm of ALD Al2O3 and 6 μm of parylene C, and tested by soaking in phosphate buffered solution (PBS) at 57 °C for 4× accelerated lifetime testing. The INIs were also powered continuously through 2.765 MHz inductive power and forward telemetry link at unregulated 5 V. The bilayer encapsulated INIs were fully functional for ∼35 days (140 days at 37 °C equivalent) with consistent power-up frequencies (∼910 MHz), stable RF signal (∼-75 dBm), and 100 % command reception rate. This is ∼10 times of equivalent lifetime of INIs with parylene-only encapsulation (13 days) under same power condition at 37 °C. The bilayer coated INIs without continuous powering lasted over 1860 equivalent days (still working) at 37 °C. Those results suggest that bias stress is a significant factor to accelerate the failure of the encapsulated devices. The INIs failed completely within 5 days of the initial frequency shift of RF signal at 57 °C, which implied that the RF frequency shift is an early indicator of encapsulation/device failure.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Aluminum Oxide / chemistry*
  • Electrodes, Implanted*
  • Materials Testing*
  • Polymers / chemistry*
  • Wireless Technology*
  • Xylenes / chemistry*

Substances

  • Polymers
  • Xylenes
  • parylene
  • Aluminum Oxide