Nonverbal behavior expresses many of the dynamics underlying face-to-face social interactions, implicitly revealing one's attitudes, emotions, and social motives. Although research has often described nonverbal behavior as approach versus avoidant (i.e., through the study of proxemics), psychological responses to many social contexts are a mix of these two. Fairness violations are an ideal example, eliciting strong avoidance-related responses such as negative attitudes, as well as strong approach-related responses such as anger and retaliation. As such, nonverbal behavior toward unfair others is difficult to predict in discrete approach versus avoidance terms. Here we address this problem using proxemic imaging, a new method which creates frequency images of dyadic space by combining motion capture data of interpersonal distance and gaze to provide an objective but nuanced analysis of social interactions. Participants first played an economic game with fair and unfair players and then encountered them in an unrelated task in a virtual environment. Afterwards, they could monetarily punish the other players. Proxemic images of the interactions demonstrate that, overall, participants kept the fair player closer. However, participants who actively punished the unfair players were more likely to stand directly in front of those players and even to turn their backs on them. Together these patterns illustrate that fairness violations influence nonverbal behavior in ways that further predict differences in more overt behavior (i.e., financial punishment). Moreover, they demonstrate that proxemic imaging can detect subtle combinations of approach and avoidance behavior during face-to-face social interactions.