The value of common polymorphisms in guiding clinical psychiatry is limited by the complex polygenic architecture of psychiatric disorders. Common polymorphisms have too small an effect on risk for psychiatric disorders as defined by clinical phenomenology to guide clinical practice. To identify polymorphic effects that are large and reliable enough to serve as biomarkers requires detailed analysis of a polymorphism's biology across levels of complexity from molecule to cell to circuit and behavior. Emphasis on behavioral domains rather than clinical diagnosis, as proposed in the Research Domain Criteria framework, facilitates the use of mouse models that recapitulate human polymorphisms because effects on equivalent phenotypes can be translated across species and integrated across levels of analysis. A knockin mouse model of a common polymorphism in the brain-derived neurotrophic factor gene (BDNF) provides examples of how such a vertically integrated translational approach can identify robust genotype-phenotype relationships that have relevance to psychiatric practice.
Keywords: Anxiety; BDNF Val66Met; Behavioral dimension; Common polymorphism; Fear learning; Genetic biomarker.
Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.