Skeletal development is a complex process regulated by multifactorial signaling cascades that govern proper tissue specific cell differentiation and matrix production. The influence of certain regulatory peptides on cartilage or bone development can be predicted but are not widely studied. In this review, we aimed to assemble and overview those signaling pathways which are modulated by PACAP and VIP neuropeptides and are involved in cartilage and bone formation. We discuss recent experimental data suggesting broad spectrum functions of these neuropeptides in osteogenic and chondrogenic differentiation, including the canonical downstream targets of PACAP and VIP receptors, PKA or MAPK pathways, which are key regulators of chondro- and osteogenesis. Recent experimental data support the hypothesis that PACAP is a positive regulator of chondrogenesis, while VIP has been reported playing an important role in the inflammatory reactions of surrounding joint tissues. Regulatory function of PACAP and VIP in bone development has also been proved, although the source of the peptides is not obvious. Crosstalk and collateral connections of the discussed signaling mechanisms make the system complicated and may obscure the pure effects of VIP and PACAP. Chondro-protective properties of PACAP during oxidative stress observed in our experiments indicate a possible therapeutic application of this neuropeptide.
Keywords: BMP; CREB; Hedgehog; PKA; Runx2.
Copyright © 2015 Elsevier Inc. All rights reserved.