Root-flipped multiband refocusing pulses

Magn Reson Med. 2016 Jan;75(1):227-37. doi: 10.1002/mrm.25629. Epub 2015 Feb 22.

Abstract

Purpose: To design low peak power multiband refocusing radiofrequency pulses, with application to simultaneous multislice spin echo MRI.

Theory and methods: Multiband Shinnar-Le Roux β polynomials were designed using convex optimization. A Monte Carlo algorithm was used to determine patterns of β polynomial root flips that minimized the peak power of the resulting refocusing pulses. Phase-matched multiband excitation pulses were also designed to obtain linear-phase spin echoes. Simulations compared the performance of the root-flipped pulses with time-shifted and phase-optimized pulses. Phantom and in vivo experiments at 7T validated the function of the root-flipped pulses and compared them to time-shifted spin echo signal profiles.

Results: Averaged across number of slices, time-bandwidth product, and slice separation, the root-flipped pulses have 46% shorter durations than time-shifted pulses with the same peak radiofrequency amplitude. Unlike time-shifted and phase-optimized pulses, the root-flipped pulses' excitation errors do not increase with decreasing band separation. Experiments showed that the root-flipped pulses excited the desired slices at the target locations, and that for equivalent slice characteristics, the shorter root-flipped pulses allowed shorter echo times, resulting in higher signal than time-shifted pulses.

Conclusion: The proposed root-flipped multiband radiofrequency pulse design method produces low peak power pulses for simultaneous multislice spin echo MRI.

Keywords: Multiband; RF pulse design; Root-Flipping; Selective Excitation; Shinnar-Le Roux.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Algorithms
  • Brain / anatomy & histology*
  • Humans
  • Image Enhancement / methods*
  • Image Interpretation, Computer-Assisted / methods*
  • Imaging, Three-Dimensional / methods*
  • Magnetic Resonance Imaging / instrumentation
  • Magnetic Resonance Imaging / methods*
  • Phantoms, Imaging
  • Radio Waves
  • Reproducibility of Results
  • Sensitivity and Specificity
  • Signal Processing, Computer-Assisted*