Macrophage migration inhibitory factor (MIF) is involved in eosinophil biology and in type 2 inflammation, contributing to allergic and helminthic diseases. We hypothesized that MIF participates in the pathogenesis of eosinophilic esophagitis (EoE), an allergic condition characterized by esophageal eosinophilic inflammation. MIF is highly expressed in esophageal mucosa of patients with EoE, compared with gastro-esophageal reflux disease and control patients, where it co-localizes predominantly with eosinophils. In vitro, recombinant MIF promotes human eosinophil chemotaxis, while MIF antagonist and CXCR4 antagonist, AMD3100, revert this effect. In a model of EoE induced by ovalbumin, Mif-deficient mice have reduced inflammation and collagen deposition compared with wild-type (WT) mice. Importantly, treatment of WT mice with anti-MIF or with AMD3100 during the challenge phase prevents accumulation of eosinophils and tissue remodeling. Conversely, recombinant MIF promoted tissue eosinophil inflammation in allergic mice. Together, these results implicate MIF in the pathogenesis of esophageal inflammation and suggest that targeting MIF might represent a novel therapy for EoE.