Purpose: Radiation remains a mainstay for the treatment of nonmetastatic head and neck squamous cell carcinoma (HNSCC), a malignancy characterized by a high rate of PI3K/mTOR signaling axis activation. We investigated the ATP-competitive dual PI3K/mTOR inhibitor, PF-05212384, as a radiosensitizer in preclinical HNSCC models.
Experimental design: Extent of radiation enhancement of two HNSCC cell lines (UMSCC1-wtP53 and UMSCC46-mtP53) and normal human fibroblast (1522) was assessed by in vitro clonogenic assay with appropriate target inhibition verified by immunoblotting. Radiation-induced DNA damage repair was evaluated by γH2AX Western blots with the mechanism of DNA double-strand break repair abrogation investigated by cell cycle analysis, immunoblotting, and RT-PCR. PF-05212384 efficacy in vivo was assessed by UMSCC1 xenograft tumor regrowth delay, xenograft lysate immunoblotting, and tissue section immunohistochemistry.
Results: PF-05212384 effectively inhibited PI3K and mTOR, resulting in significant radiosensitization of exponentially growing and plateau-phase cells with 24-hour treatment following irradiation, and variable radiation enhancement with 24-hour treatment before irradiation. Tumor cells radiosensitized to a greater extent than normal human fibroblasts. Postirradiation PF-05212384 treatment delays γH2AX foci resolution. PF-05212384 24-hour exposure resulted in an evident G1-S phase block in p53-competent cells. Fractionated radiation plus i.v. PF-05212384 synergistically delayed nude mice bearing UMSCC1 xenograft regrowth, with potential drug efficacy biomarkers identified, including pS6, pAkt, p4EBP1, and Ki67.
Conclusions: Taken together, our results of significant radiosensitization both in vitro and in vivo validate the PI3K/mTOR axis as a radiation modification target and PF-05212384 as a potential clinical radiation modifier of nonmetastatic HNSCC.
©2015 American Association for Cancer Research.