Objective: To elucidate the transfected effect of albumin ultrasound microbubbles carrying peptide nucleic acids (PNAs) against c-myc gene to the vascular walls and their effect on the intimal proliferation induced by vascular denudation.
Methods: A rabbit iliac artery intimal proliferation model was constructed and PNA against c-myc mRNA was designed and synthesized and was added to albumin solution before ultrasound microbubbles were prepared and encapsulated in matrix of albumin. The ultrasound microbubbles carrying PNA were transfected to intima under ultrasound exposure. The transfected effect was identified by a histochemical method and the expression of c-myc was detected by in situ hybridization. The proliferation of intimal smooth muscle cells was estimated by the expression of proliferative cell nuclear antigen (PCNA) of them. The intimal area and thickness were judged morphologically for intimal hyperplasia.
Results: The ultrasound microbubbles with PNA were successfully prepared and c-myc PNA was transfected to vascular intimal cells. The expression of c-myc and PCNA by intimal vascular smooth muscle cells (vSMCs) was inhibited significantly and the intimal thickness and area were reduced remarkably.
Conclusion: Transfection of c-myc PNA could inhibit proliferartion of vSMCs and intima in the rabbit iliac artery intimal proliferation model and the targeted transfection of albumin ultrasound microbubbles carrying PNA offers a feasible way to facilitate its access to specific cells in vivo and produce bioavailability.
Keywords: C-myc; intimal hyperplasia; peptide nucleic acids; smooth muscle cells; ultrasound microbubbles.