This study aimed to evaluate the time course of local changes during the acute phase of gastrocnemius muscle strain, in a rat model, using an in vivo imaging system. Thirty-eight, 8-week-old Sprague-Dawley male rats were used in our study. Experimental injury of the right gastrocnemius muscle was achieved using the drop-mass method. After inducing muscle injury, a liposomally formulated indocyanine green derivative (LP-iDOPE, 7 mg/kg) was injected intraperitoneally. We evaluated the muscle injuries using in vivo imaging, histological examinations, and enzyme-linked immunosorbent assays. The fluorescence peaked approximately 18 h after the injury, and decreased thereafter. Histological examinations revealed that repair of the injured tissue occurred between 18 and 24 h after injury. Quantitative analyses for various cytokines demonstrated significant elevations of interleukin-6 and tumor necrosis factor-α at 3 and 18 h post-injury, respectively. The time course of fluorescence intensity, measured using in vivo imaging, demonstrated that the changes in cytokine levels and histopathologic characteristics were consistent. Specifically, these changes reached peaked 18 h post-injury, followed by trends toward recovery.
Keywords: gastrocnemius muscle strain; in vivo imaging; local muscle condition; muscle injury; rat model of muscle injury.
© 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.