Mechanically robust superhydrophobic steel surface with anti-icing, UV-durability, and corrosion resistance properties

ACS Appl Mater Interfaces. 2015 Mar 25;7(11):6260-72. doi: 10.1021/acsami.5b00558. Epub 2015 Mar 11.

Abstract

A superhydrophobic steel surface was prepared through a facile method: combining hydrogen peroxide and an acid (hydrochloric acid or nitric acid) to obtain hierarchical structures on steel, followed by a surface modification treatment. Empirical grid maps based on different volumes of H2O2/acid were presented, revealing a wettability gradient from "hydrophobic" to "rose effect" and finally to "lotus effect". Surface grafting has been demonstrated to be realized only on the oxidized area. As-prepared superhydrophobic surfaces exhibited excellent anti-icing properties according to the water-dripping test under overcooled conditions and the artificial "steam-freezing" (from 50 °C with 90% humidity to the -20 °C condition) test. In addition, the surfaces could withstand peeling with 3M adhesive tape at least 70 times with an applied pressure of 31.2 kPa, abrasion by 400 grid SiC sandpaper for 110 cm under 16 kPa, or water impacting for 3 h without losing superhydrophobicity, suggesting superior mechanical durability. Moreover, outstanding corrosion resistance and UV-durability were obtained on the prepared surface. This successful fabrication of a robust, anti-icing, UV-durable, and anticorrosion superhydrophobic surface could yield a prospective candidate for various practical applications.

Keywords: UV-durable; anti-icing; corrosion resistance; mechanical durability; superhydrophobic; wettability gradient.

Publication types

  • Research Support, Non-U.S. Gov't