Glioblastoma (GBM), the most common malignant primary tumor in adults, carries a dismal prognosis with an average median survival of 14-16 months. The current standard of care for newly diagnosed GBM consists of maximal safe resection followed by fractionated radiotherapy combined with concurrent temozolomide and 6 to 12 cycles of adjuvant temozolomide. The determination of treatment response and clinical decision-making in the treatment of GBM depends on accurate radiographic assessment. Differentiating treatment response from tumor progression is challenging and combines long-term follow-up using standard MRI, with assessing clinical status and corticosteroid dependency. At progression, bevacizumab is the mainstay of treatment. Incorporation of antiangiogenic therapies leads to rapid blood-brain barrier normalization with remarkable radiographic response often not accompanied by the expected survival benefit, further complicating imaging assessment. Improved radiographic interpretation criteria, such as the Response Assessment in Neuro-Oncology (RANO) criteria, incorporate non-enhancing disease but still fall short of definitely distinguishing tumor progression, pseudoresponse, and pseudoprogression. With new evolving treatment modalities for this devastating disease, advanced imaging modalities are increasingly becoming part of routine clinical care in a field where neuroimaging has such essential role in guiding treatment decisions and defining clinical trial eligibility and efficacy.