The red color of processed shrimp, one of the most attractive attributes and an important criterion for consumers, is often limited by thermal processing (microwaving, boiling and frying), due to astaxanthin degradation. The effect of thermal processing on astaxanthin in Pacific white shrimp (Litopenaeus vannamei) were investigated. A High-performance liquid chromatographic - atmospheric pressure chemical ionization mass spectrometry (LC-(APCI)-MS/MS) method was used to identify and quantify all-trans- and cis-isomers of astaxanthin, and molecular species of astaxanthin esters in fresh and thermal processed shrimps. Total astaxanthin loss ranged from 7.99% to 52.01% in first 3 min under three thermal processing. All-trans-astaxanthin was most affected, with a reduction from 32.81 to 8.72 μg kg(-1), while 13-cis-astxanthin had a rise (from 2.38 to 4.58 μg kg(-1)). Esterified astaxanthin was shown to hydrolyze and degrade, furthermore astaxanthin diesters had a better thermostability compare to astaxanthin monoesters. Astaxanthin monoesters with eicosapntemacnioc acid (EPA, C20:5) and docosahexaenoic acid (DHA, C22:6), had a lower thermal stability than those with saturated fatty acids, however, it was the opposite of astaxanthin diesters. The findings suggested that the method of thermal processing should be carefully used in the manufacturing and domestic cooking of shrimps. The results also could be useful in calculating the dietary intake of astaxanthin and in assessing astaxanthin profiles and contents of shrimp containing products.