Density of hydroxyl radicals generated in an aqueous solution by irradiating carbon-ion beam

Chem Pharm Bull (Tokyo). 2015;63(3):195-9. doi: 10.1248/cpb.c14-00736. Epub 2015 Jan 14.

Abstract

The density of hydroxyl radicals (·OH) produced in aqueous samples by exposure to X-ray or carbon-ion beams was investigated. The generation of ·OH was detected by the electron paramagnetic resonance (EPR) spin-trapping technique using 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) as the spin-trapping agent. When the concentration of DMPO is in excess of the generated ·OH, the production of DMPO-OH (spin-trapped ·OH) should be saturated. Reaction mixtures containing several concentrations (0.5-1685 mM) of DMPO were then irradiated by a 32 Gy 290 MeV carbon-ion beam (C290-beam) or X-ray. C290-beam irradiation was performed at the Heavy-Ion Medical Accelerator in Chiba (HIMAC, National Institute of Radiological Sciences, Chiba, Japan), applying different linear energy transfers (LET) (20-169 keV/µm). The amount of DMPO-OH in the irradiated samples was detected by EPR spectroscopy. The generation of DMPO-OH increased with the concentration of initial DMPO, displayed a shoulder around 3.3 mM DMPO, and reached a plateau. This plateau suggests that the generated ·OH were completely trapped. Another linear increase in DMPO-OH measured in solutions with higher DMPO concentrations suggested very dense ·OH generation (>1.7 M). Generation of ·OH is expected to be localized on the track of the radiation beam, because the maximum concentration of measured DMPO-OH was 40 µM. These results suggested that both sparse (≈3.3 mM) and dense (>1.7 M) ·OH generation occurred in the irradiated samples. The percentage of dense ·OH generation increased with increasing LET. Different types of dense ·OH generation may be expected for X-ray and C290-beams.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Carbon / chemistry*
  • Free Radicals / chemistry
  • Free Radicals / radiation effects
  • Heavy Ion Radiotherapy / methods
  • Heavy Ions*
  • Hydroxyl Radical / chemistry*
  • Hydroxyl Radical / radiation effects*
  • Solutions
  • Water / chemistry*
  • X-Rays

Substances

  • Free Radicals
  • Solutions
  • Water
  • Hydroxyl Radical
  • Carbon