Contribution of sodium channel neuronal isoform Nav1.1 to late sodium current in ventricular myocytes from failing hearts

J Physiol. 2015 Mar 15;593(6):1409-27. doi: 10.1113/jphysiol.2014.278259. Epub 2014 Nov 17.

Abstract

Key points: Late Na(+) current (INaL) contributes to action potential remodelling and Ca(2+)/Na(+) changes in heart failure. The molecular identity of INaL remains unclear. The contributions of different Na(+) channel isoforms, apart from the cardiac isoform, remain unknown. We discovered and characterized a substantial contribution of neuronal isoform Nav1.1 to INaL. This new component is physiologically relevant to the control of action potential shape and duration, as well as to cell Ca(2+) dynamics, especially in heart failure.

Abstract: Late Na(+) current (INaL) contributes to action potential (AP) duration and Ca(2+) handling in cardiac cells. Augmented INaL was implicated in delayed repolarization and impaired Ca(2+) handling in heart failure (HF). We tested if Na(+) channel (Nav) neuronal isoforms contribute to INaL and Ca(2+) cycling defects in HF in 17 dogs in which HF was achieved via sequential coronary artery embolizations. Six normal dogs served as control. Transient Na(+) current (INaT ) and INaL in left ventricular cardiomyocytes (VCMs) were recorded by patch clamp while Ca(2+) dynamics was monitored using Fluo-4. Virally delivered short interfering RNA (siRNA) ensured Nav1.1 and Nav1.5 post-transcriptional silencing. The expression of six Navs was observed in failing VCMs as follows: Nav1.5 (57.3%) > Nav1.2 (15.3%) > Nav1.1 (11.6%) > Nav2.1 (10.7%) > Nav1.3 (4.6%) > Nav1.6 (0.5%). Failing VCMs showed up-regulation of Nav1.1 expression, but reduction of Nav1.6 mRNA. A similar Nav expression pattern was found in samples from human hearts with ischaemic HF. VCMs with silenced Nav1.5 exhibited residual INaT and INaL (∼30% of control) with rightwardly shifted steady-state activation and inactivation. These currents were tetrodotoxin sensitive but resistant to MTSEA, a specific Nav1.5 blocker. The amplitude of the tetrodotoxin-sensitive INaL was 0.1709 ± 0.0299 pA pF(-1) (n = 7 cells) and the decay time constant was τ = 790 ± 76 ms (n = 5). This INaL component was lacking in VCMs with a silenced Nav1.1 gene, indicating that, among neuronal isoforms, Nav1.1 provides the largest contribution to INaL. At -10 mV this contribution is ∼60% of total INaL. Our further experimental and in silico examinations showed that this new Nav1.1 INaL component contributes to Ca(2+) accumulation in failing VCMs and modulates AP shape and duration. In conclusion, we have discovered an Nav1.1-originated INaL component in dog heart ventricular cells. This component is physiologically relevant to controlling AP shape and duration, as well as to cell Ca(2+) dynamics.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, N.I.H., Intramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Action Potentials*
  • Animals
  • Calcium Signaling
  • Cells, Cultured
  • Dogs
  • Ethyl Methanesulfonate / analogs & derivatives
  • Ethyl Methanesulfonate / pharmacology
  • Heart Failure / genetics
  • Heart Failure / metabolism*
  • Heart Failure / physiopathology
  • Heart Ventricles / cytology
  • Humans
  • Myocytes, Cardiac / drug effects
  • Myocytes, Cardiac / metabolism*
  • Myocytes, Cardiac / physiology
  • NAV1.1 Voltage-Gated Sodium Channel / genetics
  • NAV1.1 Voltage-Gated Sodium Channel / metabolism*
  • Protein Isoforms / genetics
  • Protein Isoforms / metabolism
  • Sodium Channel Blockers / pharmacology
  • Tetrodotoxin / pharmacology

Substances

  • NAV1.1 Voltage-Gated Sodium Channel
  • Protein Isoforms
  • Sodium Channel Blockers
  • methanethiosulfonate ethylammonium
  • Tetrodotoxin
  • Ethyl Methanesulfonate