H-ras distribution and signaling in plasma membrane microdomains are regulated by acylation and deacylation events

Mol Cell Biol. 2015 Jun 1;35(11):1898-914. doi: 10.1128/MCB.01398-14. Epub 2015 Mar 16.

Abstract

H-Ras must adhere to the plasma membrane to be functional. This is accomplished by posttranslational modifications, including palmitoylation, a reversible process whereby H-Ras traffics between the plasma membrane and the Golgi complex. At the plasma membrane, H-Ras has been proposed to occupy distinct sublocations, depending on its activation status: lipid rafts/detergent-resistant membrane fractions when bound to GDP, diffusing to disordered membrane/soluble fractions in response to GTP loading. Herein, we demonstrate that H-Ras sublocalization is dictated by its degree of palmitoylation in a cell type-specific manner. Whereas H-Ras localizes to detergent-resistant membrane fractions in cells with low palmitoylation activity, it locates to soluble membrane fractions in lineages where it is highly palmitoylated. Interestingly, in both cases GTP loading results in H-Ras diffusing away from its original sublocalization. Moreover, tilting the equilibrium between palmitoylation and depalmitoylation processes can substantially alter H-Ras segregation and, subsequently, its biochemical and biological functions. Thus, the palmitoylation/depalmitoylation balance not only regulates H-Ras cycling between endomembranes and the plasma membrane but also serves as a key orchestrator of H-Ras lateral diffusion between different types of plasma membrane and thereby of H-Ras signaling.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Acylation / physiology*
  • Animals
  • COS Cells
  • Cell Line
  • Cell Line, Tumor
  • Cell Membrane / metabolism*
  • Chlorocebus aethiops
  • Golgi Apparatus / metabolism
  • HEK293 Cells
  • HeLa Cells
  • Humans
  • Lipoylation / physiology
  • MCF-7 Cells
  • Membrane Microdomains / metabolism*
  • Protein Processing, Post-Translational / physiology
  • Protein Transport / physiology*
  • Proto-Oncogene Proteins p21(ras) / metabolism*
  • Signal Transduction / physiology*

Substances

  • Proto-Oncogene Proteins p21(ras)