Despite clinical, material, and pharmaceutical advances, infection remains a major obstacle in total joint revision surgery. Successful solutions must extend beyond bulk biomaterial and device modifications, integrating locally delivered pharmaceuticals and physiological cues at the implant site, or within large bone defects with prominent avascular spaces. One approach involves coating clinically familiar allograft bone with an antibiotic-releasing rate-controlling polymer membrane for use as a matrix for local drug release in bone. The kinetics of drug release from this system can be tailored via alterations in the substrate or the polymeric coating. Drug-loaded polycaprolactone coating releases bioactive tobramycin from both cadaveric-sourced cancellous allograft fragments and synthetic hybrid coralline ceramic bone graft fragments with similar kinetics over a clinically relevant 6-week timeframe. However, micron-sized allograft particulate provides extended bioactive tobramycin release. Addition of porogen polyethylene glycol to the polymer coating formulation changes tobramycin release kinetics without significant impact on released antibiotic bioactivity. Incorporation of oil-microencapsulated tobramycin into the polymer coating did not significantly modify tobramycin release kinetics. In addition to releasing inhibitory concentrations of tobramycin, antibiotic-loaded allograft bone provides recognized beneficial osteoconductive potential, attractive for decreasing orthopedic surgical infections with improved filling of dead space and new bone formation.