MicroRNAs (miRNAs) are small noncoding RNAs found to govern nearly every biological process. They frequently acquire a gain or a loss of function in cancer, hence playing a causative role in the development and progression of cancer. There are major obstacles on the way for the successful delivery of miRNA, which include low cellular uptake of the RNA and endosomal escape, immunogenicity, degradation in the bloodstream, and rapid renal clearance. The delivered miRNA needs to be successfully routed to the target organ, enter the cell and reach its intracellular target in an active form. Consequently, in order to exploit the promise of RNA interference, there is an urgent need for efficient methods to deliver miRNAs. These can be divided into three main categories: complexation, encapsulation, and conjugation. In this review, we will discuss the special considerations for miRNA delivery for cancer therapy, focusing on nonviral delivery systems: lipid, polymeric, and inorganic nanocarriers.