Using fully kinetic simulations, we study the scaling of the inflow speed of collisionless magnetic reconnection in electron-positron plasmas from the nonrelativistic to ultrarelativistic limit. In the antiparallel configuration, the inflow speed increases with the upstream magnetization parameter σ and approaches the speed of light when σ>O(100), leading to an enhanced reconnection rate. In all regimes, the divergence of the pressure tensor is the dominant term responsible for breaking the frozen-in condition at the x line. The observed scaling agrees well with a simple model that accounts for the Lorentz contraction of the plasma passing through the diffusion region. The results demonstrate that the aspect ratio of the diffusion region, modified by the compression factor of proper density, remains ∼0.1 in both the nonrelativistic and relativistic limits.